

BRUSSELS OF ENGINEERING

Data-driven, physics-informed simulation of turbulent reacting flows: current state, challenges and perspectives

Alessandro Parente, Axel Coussement, Giuseppe D'Alessio, Kamila Zdybał, Rafi Malik

1

ERCOFTAC Autumn Festival 2023

Science has entered a *fourth paradigm*, based on the availability of massive data and new analytics

Experimental

Empiricism: observation of natural phenomena

permissiter
science | Theoretical science

Theories, modelling and generalisation

n^s

i=1

 $\rho_i\mathbf{f}_i$

Grand challenges in turbulent reacting flows

3

Small scales

Chemical time scales span 12 decades and can strongly overlap with fluid dynamic ones

Grand challenges in turbulent reacting flows

4

for mass, momentum

Many species

hundreds of species tightly coupled via thousands chemical reactions

Grand challenges in turbulent reacting flows

for mass, momentum

Non-linear interactions

Non-linear evolution of the chemical state-space and large temperature fluctuations

$$
k_{f,j} = A_{f,j} T^{\beta_{f,j}} exp \left(-\frac{E_{f,j}}{RT}\right)
$$

Machine learning for combustion

6

Feature extraction Feature extraction reduction

Improving knowledge and description of turbulent reacting flows

Reducing the cost of large-scale combustion simulations

troubleshooting,

Data-enhanced models and closures

Adaptive combustion closures and chemistry models

Physics-based, data-driven approaches

"Without data you're just another person with an opinion" - W. Edwards Deming

Use of data

Physics-based, data-driven approaches

"Without data you're just another person with an opinion" - W. Edwards Deming

"Without physical knowledge, you're just another person with an opinion or data" - unknown

Use of data

Physics-based, data-driven approaches

scientific knowledge fic knowledge Use of scienti $\overline{\bullet}$ Use

"Without data you're just another person with an opinion" - W. Edwards Deming

"Without physical knowledge, you're just another person with an opinion or data" - unknown

Hybrid models *interpretable, explainable and generalisable*

Classification Dimensionality reduction New closures Multi-fidelity ROMs Digital twins

Use of data

Data-driven

Physics-based

Physics-based

Expert

knowledge

State-space methods

Equilibrium, Steady Laminar Flamelets (SLFM) Flamelet Prolongation of the ILDM (FPI) / Flamelet generated Manifold (FGM)

Rate-based methods

Intrinsic Low-Dimensional Manifolds (ILDM), Computational Singular Perturbation (CSP), Directed-Relation Graph (DRG) …

Data-driven modelling for dimensionality reduction

10

Reduction of the number of species and reactions involved in the kinetic mechanism

Parameterization of the chemical state-space based on optimal reaction variables

Data-driven modelling for dimensionality reduction

11

State-space methods

Transport of Principal Components

M. R. Malik, P. Obando Vega, A. Coussement, A. Parente, Proceedings of the Combustion Institute, 2020. same state and source vector quantities. Thus, matrices **X** and **S** are formed with the same quantities. Collecting all observations of *Yi* and of *T* into a matrix **X**, and collecting all observations of !*i*/⇢ and of same state and source vector quantities. Thus, matrices **X** and **S** are formed with the same quantities. **T** roceedings of the Combustion mstitute, 2020.

Rate-based methods

Pre-partitioned adaptive chemistry

G. D'Alessio, A. Parente, A. Stagni, A. Cuoci, Combustion and Flame, 211, 2020, 68-82 same state and source vector quantities. Thus, matrices **X** and **S** are formed with the same quantities. Compustion and Fiame, ZTT, 2020, 00-02 same state and source vector quantities. Thus, matrices **X** and **S** are formed with the same quantities. Collibustion and Tiame, ZTT, ZUZU, 00-02

12

Data-driven modelling for dimensionality reductio

State-space methods

Transport of Principal Components

M. R. Malik, P. Obando Vega, A. Coussement, A. Parente, Proceedings of the Combustion Institute, 2020. same state and source vector quantities. Thus, matrices **X** and **S** are formed with the same quantities. Collecting all observations of *Yi* and of *T* into a matrix **X**, and collecting all observations of !*i*/⇢ and of same state and source vector quantities. Thus, matrices **X** and **S** are formed with the same quantities. **T** roceedings of the Combustion mstitute, 2020.

Rate-based methods

Pre-partitioned adaptive chemistry

G. D'Alessio, A. Parente, A. Stagni, A. Cuoci, Combustion and Flame, 211, 2020, 68-82 same state and source vector quantities. Thus, matrices **X** and **S** are formed with the same quantities. Compustion and Fiame, ZTT, 2020, 00-02 same state and source vector quantities. Thus, matrices **X** and **S** are formed with the same quantities. Collibustion and Tiame, ZTT, ZUZU, 00-02

Reactive scalars are correlated in state-space: how can we best parameterise the manifolds?

PCA can be used to generalise the selection of "optimal progress variables" in state-space methods

(Linear) modal decomposition methods such as Principal Component Analysis provide a parameterisation that can be used to derive transport models for combustion simulations

Principal Component Analysis is the simplest data mining approach for combustion data

PCA is an eigenvalue/eigenvector problem applied to the covariance matrix of the data set, S

15

I - Original data II - PC extraction III - Rotation IV - Size reduction II - PC extraction

III - Rotation

A new coordinate system is identified in the direction of maximum variance

Keeping only the most energetic directions, the original dimensionality can be reduced

PCA encodes the state space into a low-dimensional manifold using features for which transport equations can be solved

 ρ $\mathbf{D}\left(\mathbf{z}\right)$ D*t* $-\nabla \cdot (\mathbf{i}_z) + (s_z)$

J. Sutherland and A. Parente, *Proc. Combust. Inst.* 32 (2009) 1563-1570.

PCA encodes the state space into a low-dimensional manifold using features for which transport equations can be solved

-80

-60

-40

-0.4

PC₂

 -0.2 1.5

 0.2 0.4 -0.5 0.5 1

PC

J. Sutherland and A. Parente, *Proc. Combust. Inst.* 32 (2009) 1563-1570.

The direct reconstruction of the chemical source terms from the reconstructed state space is affected by non-linear error propagation

N

Error in Y

Non-linear error propagation limits the effective dimensionality of the reduced state space

A non-linear mapping (regression) can be used to encode the

non-linear relationship between state-space and sources

PC source term mapping using supervised non-linear regression algorithms

ANN - Artificial Neural **Networks**

A. Biglari, J.C. Sutherland, *Combust Flame* 159 (2012) 1960-1970. Y. Yang, S.B. Pope, J.H. Chen, *Combust Flame* 160 (2014) 1967-1980.

MARS - Multi-Adaptive Regression Splines

GPR - Gaussian Process Regression

B.J. Isaac, J.N. Thornock, J.C. Sutherland, P.J. Smith, A. Parente, *Combust Flame* 162 (2015) 2592–2601. M.R. Malik, B.J. Isaac, A. Coussement, P.J. Smith, A. Parente, *Combust Flame* 187 (2018) 30-41.

H. Mirgolbabaei, T. Echekki, *Combust Flame* 160 (2013) 898-908. H. Mirgolbabaei, T. Echekki, *Combust Flame* 162 (2015) 1919-1933.

Applications of the PCA-GPR framework

Applications of the PCA-GPR framework

Expensive function evaluations

PCA models from simple reactors can be used on complex configurations

2 PC-transport model trained on a single 3 laminar flame and used to predict eight syngas, turbulent premixed flames

PCA models from simple reactors can be used on complex configurations

PCA models from simple reactors can be used on complex configurations

A. Coussement, B. Isaac, O. Gicquel and A. Parente, *Combust Flame* 168 (2016) 83-97.

PC-transport (PCA-GPR) simulation of Flames D and F

3D simulation using OpenFOAM

Training data

Turbulence generator: Digital Filter (Klein, 2003) 2nd order in time, 2nd order space, WALE model 2 transported variables: Z_1 and Z_2 (negligible effect of sub grid closure)

Database of laminar counter-diffusion flames Fuel stream: 25% CH4, 75% air (by vol) Unsteady simulations with sinusoidal strain rate 80,000 observations per variable

Domain

0.6m x 0.3m x 0.3m, conical mesh, 3.2M cells, resolution: d/8=0.45mm

Settings

28

M. R. Malik, P. Obando Vega, A. Coussement, A. Parente, Proc Comb Inst 38 (2021) 2635-2643.

-
-

Complexity increases when going from flame D to flame F

29

 $\frac{pY_F - Y_{O_2} + Y_{O_2,2}}{pY}$ $\nu Y_{F,1} + Y_{O_2,2}$

same system, different Reynolds number, Z captures most non-linearity

$$
f=\frac{\nu Y_F}{\nu}
$$

The PCs can be associated to physically interpretable variables

PCA finds the optimal parameterisation with no supervision: generalisation of tabulation methods

Flame D

 $x/D=3$

 $x/D=15$

 $x/D=30$

ARTICLE IN PRESS

Flame D - conditional averages

Flame F

plotted against the experiments – centerline.

Flame F - conditional averages F - conditional averages

36

Bounds, training manifolds and actual computation sitions for the PC basis of the PC basis using major species (PC-GPR – PC-GPR – PC-GPR – PC-GPR – PC-GPR – PCmajor dit basis obtained using the basis of species of species \cup

(a) flame D vs original manifold and species mass fraction.

(b) flame F vs original manifold

Data-driven modelling for dimensionality reduction

State-space methods

Transport of Principal Components

M. R. Malik, P. Obando Vega, A. Coussement, A. Parente, Proceedings of the Combustion Institute, 2020. same state and source vector quantities. Thus, matrices **X** and **S** are formed with the same quantities. Collecting all observations of *Yi* and of *T* into a matrix **X**, and collecting all observations of !*i*/⇢ and of same state and source vector quantities. Thus, matrices **X** and **S** are formed with the same quantities. **T** roceedings of the Combustion mstitute, 2020.

Rate-based methods

Pre-partitioned adaptive chemistry

G. D'Alessio, A. Parente, A. Stagni, A. Cuoci, Combustion and Flame, 211, 2020, 68-82 same state and source vector quantities. Thus, matrices **X** and **S** are formed with the same quantities. Compustion and Fiame, ZTT, 2020, 00-02 same state and source vector quantities. Thus, matrices **X** and **S** are formed with the same quantities. Collibustion and Tiame, ZTT, ZUZU, 00-02

Sample-Partitioning Adaptive Reduced Chemistry Classification of state-space and locally optimal chemical mechanisms

Here I need only 2 species $(O_2$ and $N_2)$

classification

Here I need all species

Sample-Partitioning Adaptive Reduced Chemistry

Our clustering approach relies on local PCA

Our Local PCA approach combines dimensionality reduction and vector quantisation in a single step $a_1^{\left(2\right) }$ 1 $a_1^{(1)}$ 1 *a*(3) 1 $a_1^{(4)}$ 1

A multi-dimensional point is assigned to the cluster ensuring

the lowest low-dimensional reconstruction

 $a_1^{(1)}$

1

1

a(3)

 $a_1^{(4)}$

1

 $a_1^{\left(2\right) }$

1

The approach is iterative and requires the specification of a hyper parameter, the number of clusters

 $a_1^{\left(2\right) }$

1

a(3)

1

a(4)

1

A. Parente, J.C. Sutherland, B.B. Dally, L. Tognotti, P.J. Smith, *Proc Comb Inst* 33 (2011) 3333-3341.

Application to an unsteady co-flow methane flame

$(\epsilon_{DRGEP}=0.005)$

Relation between the error and the DRGEP threshold

 ϵ_{DRGEP}

G. D'Alessio, A. Stagni, A. Parente, A. Cuoci, *Combust Flame* 211 (2020) 68-82

Relation between the error and the DRGEP threshold

G. D'Alessio, A. Stagni, A. Parente, A. Cuoci, *Combust Flame* 211 (2020) 68-82

Mechanism size: ~100 species

Impact of the training dataset

Extension to transportation fuels: accuracy of on-the-fly classification

LPCA for training data classification

Deep learning for the *on-thefly* classification

Application to an unsteady co-flow n-heptane flame

Prediction of soot precursors

Extension to transportation fuels: unsteady co-flow n-heptane flame

Mechanism size: 172 species and 6,067 reactions

Machine learning for combustion

52

Feature extraction Feature extraction reduction

Improving knowledge and description of turbulent reacting flows *Reducing the cost of large-scale combustion simulations*

troubleshooting, sensing and design

Data-enhanced models and closures

Developing adaptive combustion closures and chemistry models Lecture Notes in Energy 44

Nedunchezhian Swaminathan **Alessandro Parente Editors**

Machine Learning and Its Application to Reacting Flows

ML and Combustion

OPEN ACCESS

2 Springer

Machine Learning Techniques in Reactive Atomistic Simulations H. Aktulga, V. Ravindra, A. Grama, S. Pandit A Novel In Situ Machine Learning Framework for Intelligent Data Capture and Event **Detection** T. M. Shead, I. K. Tezaur, W. L. Davis IV, M. L. Carlson, D. M. Dunlavy, E. J. Parish et al. Machine-Learning for Stress Tensor Modelling in Large Eddy Simulation Z. M. Nikolaou, Y. Minamoto, C. Chrysostomou, L. Vervisch Machine Learning for Combustion Chemistry T. Echekki, A. Farooq, M. Ihme, S. M. Sarathy Deep Convolutional Neural Networks for Subgrid-Scale Flame Wrinkling Modeling V. Xing, C. J. Lapeyre Machine Learning Strategy for Subgrid Modeling of Turbulent Combustion Using Linear Eddy Mixing Based Tabulation R. Ranjan, A. Panchal, S. Karpe, S. Menon On the Use of Machine Learning for Subgrid Scale Filtered Density Function Modelling in Large Eddy Simulations of Combustion Systems

S. Iavarone, H. Yang, Z. Li, Z. X. Chen, N. Swaminathan Reduced-Order Modeling of Reacting Flows Using Data-Driven Approaches K. Zdybał, M. R. Malik, A. Coussement, J. C. Sutherland, A. Parente AI Super-Resolution: Application to Turbulence and Combustion M. Bode

Machine Learning for Thermoacoustics Matthew P. Juniper

CYPHER

Cyber-Physical systems and digital twins for the decarbonisation of energy-intensive industries

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ ERC grant agreement n. 714605.

The research leading to these results has also received funding from the European Unions Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 643134.

Some of the researchers who have contributed to these results hold individual fellowships from FNRS (Belgian National Scientific Research Fund) and Université Libre de Bruxelles.

European Research Council Established by the European Commission

European Commission

