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WHAT IS ELASTOHYDRODYNAMIC LUBRICATION?

— Why lubricate?
Keep surfaces separated

 , lupricant

https.//www.epfl.ch/labs/lsms/research/contact-mechanics-tribology/mesoscale-contact-friction-and-wear/
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WHAT IS ELASTOHYDRODYNAMIC LUBRICATION?

— Why lubricate? Hydrodynamic
Keep surfaces separated lubrication

— Avoid contact, peaks breaking off
and contamination

——

— Reduce friction and power

Lubricant

consumption

—5

— Limit temperature and
evacuate heat
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WHAT IS ELASTOHYDRODYNAMIC LUBRICATION?

1. Deformation of the surfaces ‘ i

EHL
2. Steep increase of viscosity with pressure

> Support very high load without contact

|

Rolling Elastic C

https;//www.machinerylubrication.com/Read/30741/lubrication-regimes
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BEARINGS

Experimental measurements very diffict

It = simulation

— Improve reliability and dura

_ — Limiting noise, vibration and
T

Dility
harshness

GHENT — Improving hydraulic performance
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FLUID-STRUCTURE INTERACTION




SOLVING AN FSI PROBLEM
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Equilibrium conditions on Interface
— Equal displacement
— Equal force magnitude, but opposite sign



SOLVING AN FSI PROBLEM

Structure solver

Structural solver

Monolithic approach Partitioned approach

© Mature and robust solvers
© Application tailored solvers

T © Coupling iterations required
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HOW TO SIMULATE FS

— Loop until solution remains

unchanged = converged Forces
Previous
— 0One loop = coupling iteration time step
— Only exchange interface data l
=>» black-box
solver
— Strongly coupled problems
. . . Updated
with coupling algorithm displacement[ gy [ convergea? |
=>» interface quasi-Newton (IQN) . L. Next
isplacement time step
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SOLVING AN FSI PROBLEM

forces

= um OpenFOAM

B B B TheOpenFOAM Foundation

updated

HENT displacement
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Structural solver

MULTI—PHYSICS | ==

displacement



FSI SIMULATION OF EHL




EHL SIMULATION

— Cylindrical roller bearing
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https;//www.skf.com/uk/products/rolling-bearings/roller-bearings/cylindrical-roller-bearings
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EHL SIMULATION
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EHL SIMULATION

Actual geometry Equivalent geometry
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LUBRICANT MODELING

— Modeling the lubricant: squalane

— (Cavitation: homogeneous equilibrium model
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LUBRICANT MODELING

— Modeling the lubricant: squalane

— (Cavitation: homogeneous equilibrium model
— Density: Tait equation
— Viscosity: Doolittle equation
— Shear-thinning: Carreau model
— Thermal conductivity and heat capacity
— Flow solver =2 modification of solver in OpenFOAM

= EEBE OpenFOAM

GHENT B B B TheOpenFOAM Foundation
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BOUNDARY CONDITIONS

wall
rotating velocity
FSI displacement
fixed temperature

fixed total pressure
zero gradient velocity
fixed temperature
fixed density

wall
translating velocity
fixed temperature

N
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zero displacement

FSI pressure and

traction
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DISCRETIZATION

Flow solver: OpenFOAM

— Time: first order backward Euler
— Convective terms: first order upwind

— Time: second order Bossak
— First-order plane strain elements
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EHL SIMULATION

— Time step size 10 ns
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EHL SIMULATION

Uu1q +u2

— Entrainment speed =
— Sliding speed = |u; — u,|

2|uq—u;|

— Slip-to-roll ratio (SRR) =

U1 +u2

— Pure rolling: SRR O
— Pure slip: SRR 2
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EHL SIMULATION: VELOCITY (m/s)

_
o1
| Ny

Entrainment speed 2.5 m/s
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EHL SIMULATION: TEMPERATURE (K)
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EHL SIMULATION: DYNAMIC VISCOSITY (Pa s)

SRR 0
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CONCLUSION

— Elastohydrodynamic lubrication: -
flattening of surfaces + increase of viscosity Smme |

— Partitioned FSI: n
reuse existing solvers
— Opensource high-fidelity solvers = mm OpenFOAM I<KRATOSHS
B B B TheOpenFOAM Foundation MULTI——HYSICS
i
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