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Developing disruptive technology for hypersonics

I Hypersonics
I Fight within planetary atmosphere at Mach > 5

I Challenges for fluid models and numerical methods
I Multiscale and multiphysics problem
I Calibration and validation of computational models

Air Breathing Electric Propulsion concept
for Very Low Earth Orbit observation

Orion Crew Module reentry
14 November 2022 (Artemis I)
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“Aerothermochemistry” coined by von Kármán
“With the advent of jet propulsion, it became necessary to broaden the field of

aerodynamics to include problems which before were treated mostly by physical

chemists. . .” Theodore von Kármán, 1958

I Some open problems
I Fluid models for thermo-chemical nonequilibrium
I High-order methods for hypersonic flows
I Efficient solvers for 3D plasma sheath

[Capriati, Turchi, Congedo, M., 9th EUCASS 2022]

Under-expanded air jet over catalytic probe in VKI Plasmatron
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Fluid models beyond Navier-Stokes. . .
I Kinetic theory allows us to

I Describe plasmas in the rarefied regime
I Derive asymptotic fluid solutions

[Bariselli, Boccelli, Dias, Hubin, M., Astronomy & Astrophysics 2020]

Meteors can be detected by scattering of electromagnetic waves by
electrons in rarefied trail
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MUlticomponent Thermodynamic And Transport
properties for IONized gases library written in C++

https://github.com/mutationpp/Mutationpp
[Scoggins, Leroy, Bellas-Chatzigeorgis, Dias, M., Software X 2017]

I Centralizes physico-chemical models, algorithms, and data for
reactive and plasma flows into a single software package

I Can be shared among CFD tools
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Outline

Coarse-grain transport models consistent from the
kinetic to fluid regimes

Simulation of plasma sheath

Atmospheric entry simulation

Calibration of models
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Microscopic approach to derive macroscopic
nonequilibrium models...

I Developing high-fidelity models
physics-based

I NASA ARC database for
nitrogen chemistry
I 9390 (v,J) rovibrational

energy levels for N2

I 50× 106 reaction mechanism
for N2 + N system

N2(v, J) + N↔ N + N + N

N2(v, J) + N↔ N2(v′, J′) + N
N3 Potential Energy Surface

NASA Ames Research Center
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Kinetic equation for coarse-grain model
[Torres, Bellas-Chatzigeorgis, M., Physics of Fluids, 2021]

I Set of species

S = {N,N2 (k) | (k = 1, 2, . . . , nbins)}

I Boltzmann equation (1D space 3D velocity)

∂fN

∂t
+ cx
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I Reactive collisions are assumed to follow the Maxwellian regime
I Consistency between the kinetic and fluid regimes is a direct

consequence of the asymptotic analysis of the Boltzmann eq.
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Fluid regime: Navier-Stokes eqs.

I Enskog expansion
fi = f 0

i (1 + εφi ), i ∈ S

I Chapman-Enskog perturbative solution method yields
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I Chemical production rates satisfy the law of mass action
I The forward and backward rate coefficients are linked to an

equilibrium constant consistent with the system
thermodynamics
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Entropy eq. (2nd law of thermodynamics)

∂ (ρs)

∂t
+

∂

∂x
(ρs u) +

∂

∂x
JS = Υ

I Entropy flux

JS =
q

T
−

∑
k∈KN2

ρ̄k ū
d
k

ḡk

T
− ρN udN

gN

T

I Entropy production
Υ ≥ 0

I First coarse-grain model equipped with a transport theory that
satisfies the laws of thermodynamics
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Viscous (Navier-Stokes) versus inviscid (Euler) solution
(shock wave, u = 10 km/s)

I Euler FV solutions not polluted by numerical diffusion
I Any diffusive effects observed in the Navier–Stokes profiles are

physical in nature, i.e., exclusively due to the actual molecular
diffusion terms
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Viscous (Navier-Stokes) versus DSMC solution
(shock wave, u = 10 km/s)

I For these flight conditions, good agreement found between
kinetic (DSMC) and fluid (CFD) solutions

I Consistency of the cross-sections / rate coefficients is crucial
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Outline

Coarse-grain transport models consistent from the
kinetic to fluid regimes

Simulation of plasma sheath

Atmospheric entry simulation

Calibration of models
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Plasma-wall interaction: sheath
I Sheath

I Layer in a plasma which has a greater density of positive ions

I Challenges
I Sheath thickness becomes small as pressure increases
I Multifluid models become expensive as number of species

increases

Thermionic emission used in electron transpiration
cooling

Plasma sheath
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Dimensional analysis for plasmas [Petit, Darrozes 1975]

I 2 kinetic temporal scales based on common mean-free-path l0

t0
e =

l0

V 0
e

, t0
h =

l0

V 0
h

=
1

ε
t0
e with ε =

V 0
h

V 0
e

=

√
me

mh

I 1 macroscopic temporal scale based on macroscopic length L0

t0 =
L0

V 0
h

=
1

Kn
t0
h with Kn =

l0

L0
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Nondimensional form and scaling of Boltzmann eq.
I Electrons: e

∂t fe +
1

ε
ce·∂x fe +

1

ε
qeE ·∂cefe =

1

εKn
[Jee (fe , fe )+

∑
j∈H

Jej (fe , fj )]

I Heavy particles: i ∈ H

∂t fi + c i ·∂x fi + qi
mi

E ·∂c i fi =
1

Kn
[
1

ε
Jie(fi , fe ) +

∑
j∈H

Jij(fi , fj )]

I Multiscale assympotic analysis with entangled parabolic and
hyperbolic scalings [Graille, M., Massot 2009]

ε = Kn

I Electrons: low Mach number regime
[Bardos, Golse, Levermore, 1991]

I Heavy particles: compressible gas dynamics regime
[Goudon, Jabin, Vasseur, 2005]
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Multifluid scaling of Boltzmann eq.
I Kinetic equation for species i ∈ S

∂t fi + c i ·∂x fi + F i
mi
·∂c i fi =

∑
j 6=i

Jij(fi , fj ) +
1

ε
Jii (fi , fi ) + C r

i

I Fluid equations are decoupled for each species
I Example: isothermal ion - electron mixture in neutral bath

∂tne + ∂x (neue) = neν
iz

∂tni + ∂x (niui ) = neν
iz

∂t (neue) + ∂x

(
neu

2
e +

pe
me

)
=

nee

me
∂xφ− neueνen

∂t (niui ) + ∂x

(
niu

2
i +

pi
mi

)
= −nie

mi
∂xφ− niuiνin

I Coupling to Poisson’s eq.

∂2
xxφ =

e (ne − ni )

ε0

15 / 29



Comparison multifluid / multicomponent diffusion models
I Binary diffusion model

∂tne + ∂x (neVe) = neν
iz

∂tni + ∂x (niVi ) = neν
iz

I Diffusion velocity: Vk = −Dk

nk
∂xnk − µk∂xφ

I Binary diffusion coefficient: Dk = kBTk

mkνkn

I Species mobility: µk = qk
mkνkn

Simulation of 1D plasma sheath at 1 Pa between 2 walls
[Gangemi, Alvarez Laguna, Hillewaert, M., 9th EUCASS 2022]
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Air-Breathing Electric Propulsion (ABEP)

I Residual atmosphere drag compensated by thrust

I ABEP systems collect atmospheric molecules through intake

I Air propellant for electric thruster, no lifetime limitation!

Air Breathing Electric Propulsion concept
for Very Low Earth Orbit observation

VKI DRAGON low-density facility
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PIC/DSMC plasma simulation (PANTERA code)

[Parodi, Lapenta, M., GEC 2022]
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Plasma plume simulation with semi-implicit scheme

I Plasmas of our interest span multiple length- and time scales

I With an explicit PIC scheme no choice but to resolve these

I Fully-implicit methodology with Jacobian computed from the
actual particle motion in the grid

[Parodi, Lapenta, M., GEC 2022]
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Outline

Coarse-grain transport models consistent from the
kinetic to fluid regimes

Simulation of plasma sheath

Atmospheric entry simulation

Calibration of models
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Development of integrated codes for flow /radiation/
material coupling

I Ablative material / flow coupling

Pyrolysis gas blows in the boundary layer

I Flow / radiation coupling

Radiation field depends on flow excited species concentration

I Ablative material / radiation coupling

Ablation products can absorb the shock layer radiation
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Apollo 4 peak heating trajectory point
I First flight of Saturn V rocket and all-up

test of Apollo systems (unmanned)

I Ablative TPS

I Radiometer aligned at stagnation point

I Fore body was a 33¡ sphere segment with
nose radius of 4.69 m

I Equivalent sphere radius of 2.85 m to
reproduce shock standoff distance [Park,
2004]
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Simulation of Apollo 4 peak heating trajectory point

[Scoggins, PhD thesis 2017]

I Shock layer radiative cooling due to strong plasma emission

I Ablation products released by the heat shield contribute to
increased radiation blockage in the boundary layer

⇒ Strong coupling between the flow / radiation / material fields
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Comparison to radiometer flight data
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Development of a unified solver to treat reactive porous
material and high enthalpy flows

I Implementation in the Argo code (CENAERO)
[Schrooyen, Dias, Fagnani, Turchi, Helber, Walpot, M., FAR 2022]
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kinetic to fluid regimes
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US3D CFD solver for hypersonic flows (U Minnessota)
I 3D Finite-Volume discretization
I Modified Steger-Warming numerical scheme with MUSCL

reconstruction
I Data Parallel Line Relaxation (DPLR) to obtain rapid

convergence to steady-state

I
II

IV
III

Left: computational domain I) exit of plasma torch, II) sonic nozzle

surface, III) expansion chamber and IV) probe. Right: zoom on

numerical grid adapted with the shock to avoid carbuncle
[Capriati, Turchi, Congedo, M., 9th EUCASS 2022]
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Multifidelity surrogate model based on hierarchical Kriging

Tag cells ∆x [m] hi tCPU [min]

I 172224 5E-7 1 ≈ 1600
II 43056 1E-6 2 ≈ 200
III 10764 2E-6 4 ≈ 30
IV 2691 4E-6 8 ≈ 4

Prior and posterior marginal distributions for the QoIs.
[Capriati, Turchi, Congedo, M., 9th EUCASS 2022]
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Stochastic calibration of carbon nitridation model from
plasma wind tunnel experiments

[del Val, Lemaitre, Congedo, M., Carbon 2022]
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Conclusion

I Hypersonics is a multiscale and multiphysics problem

I Kinetic theory is a powerful tool to derive sound fluid models
for plasmas

I Well identified mathematical structure of the conservation
eqs. allows for development of numerical schemes

I Don’t forget to calibrate and validate your computational
models!
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