Dr.-Ing. Matthias Steinhausen

Modeling of near-wall flame dynamics in laminar and turbulent combustion

19th DaVinci Competition

Source: Ed Hawkins "Climate stripes 1850-2022." https://showyourstripes.info/

Outlook on future energy system

Outlook on future energy system

Combustion Nuclear Renewables		
Stated Policies	Announced Pledges	Net Zero 2050

Challenges for future combustion systems

- Trend towards downsizing
 - Reduction of pollutants
- Transition to alternative fuels

Simulation of a turbulent combustion system

Turbulence & mixing

Turbulence chemistry interaction

Chemistry

TECHNISCHE

UNIVERSITÄT DARMSTADT

Chemistry closure approaches

Finite rate chemistry

- Direct calculation of the thermochemical state
- O(100) species and O(1000) reactions
- High computational costs

Chemistry manifolds

- **Approximation** of the thermochemical state
- Combustion chemistry is fast compared to flow
- Orders of magnitude lower computational costs

Construction of chemistry manifolds

Construction of chemistry manifolds

Usage of chemistry manifolds

Development of combustion models

Model and knowledge transfer

Challenges of flame-wall interaction

Heat loss to the wall affects flame chemistry leading to

- flame extinguishment
- incomplete combustion
- pollutant formation

These effects cannot be captured by standard combustion models¹⁻³

Overview of the thesis

Overview of the thesis

Turbulent, premixed flame-wall interaction

Benchmark configuration

- Complex, turbulent flow field
- Premixed methane-air flame
- Direct numerical simulation with finite-rate chemistry
- Simulation results are published as a dataset¹

TECHNISCHE

UNIVERSITÄT DARMSTADT

Turbulent, premixed flame-wall interaction

Benchmark configuration

- Complex, turbulent flow field
- Premixed methane-air flame
- Direct numerical simulation with finite-rate chemistry

Flame-vortex interaction

Flow direction

Flame-vortex-interaction mechanism

- Vortex pushes burnt gases to the wall
- Flame front propagates over the burnt gases
- Mixing of fresh and cold burnt gases (blue area)
- Flame tip is extinguished at the wall

Flame-vortex interaction

Flame-vortex interaction

Effect of turbulence on the near-wall flame structure

Exhaust gas recirculation (EGR) at the flame tip

How to model these effects in a chemistry manifold?

Chemistry manifolds: Improved laminar model

TECHNISCHE **Model validation: Global flame properties** UNIVERSITÄT DARMSTADT *T* (K) 1250 1000 500 750 1500 1750 2000 2 Reference z (mm) $\Delta T(K)$ -150 -100 50 100 150 -50 0 0 2 Improved laminar model z (mm) 0

Chemistry manifolds: Turbulent model

Model validation: Global flame properties

DARMSTADT $Y_{\rm CO}(-)$ 0.01 0.02 0.03 0.04 2 Available online at www.sciencedirect.cr Proceedings **ScienceDirect** of the Combustion Institute Manifold validation for turbulent flows ELSEVIER Proceedings of the Combustion Institute 39 (2023) 2149-2158

- Turbulent vortices cause additional exhaust gas recirculation
 - This can be captured by an additional manifold dimension

Model validation: Pollutant formation

^a Technical University of Darmstadt, Department of M Systems, Otto

Arne Scholtissek^a, Henning Bockhorn^b, Christian H

BSTRACI A such a land

Conclusion and outlook

Conclusion and outlook

This thesis advances the **understanding and modeling** of flame-wall interactions,

SFB/Transregio 150 Turbulente, chemisch reagierende Mehrphasenströmungen in Wandnähe

paving the way to simulate real combustors with sustainable fuels.

 \bigcirc NTNU

Norwegian University of Science and Technology

