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Outline of presentation:

• Fundamentals of Vortex Particle Methods -
Kinematics of Vorticity,

• Vortex paritcle method (VIC) in 2D

• Eruption of Boudary Layer

• Flying insects

• Water tunel

• Vortex paritcle method (VIC) in 3D –Vortex Rings

• Parallel computations



1. Equations of Motion

• Navier-Stokes equation:
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Equation (1) can be transformed  to the vorticity transport equation:
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KINEMATCIS OF VORTICITY
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Helmholtz theorms 

x
v(x)

d

dt
=

Fluid loop
at time t

( ) v
d

dt

ω ω= ⋅∇

The loop at time t+dt
created by the same
fluid particles
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1. The strength of vortex  tube is 
uniform along the tube 

2. The strength (circulation about 
any closed circuit C) is invariant 
in time.

3. Vortex line are material lines 



Two –Dimensional simulation(2D)
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So in 2D the  vorticity is constant along the trajectory 



Computationl algorithm in 2D:

1. Particle approximation and redistibution to the grid nodes :
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2. Solution of the Poisson equation for stream function and
calculation of the velocity 
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3. Displacements of the particles :
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4. Simulation of viscosity and realisation of non-slip  boundary condition





Simulation of viscosity

1. Stochastic approach (Chorin, JFM 1973):

The particle path is regarded as a stochastic process define
by Ito stochastic differential eqution: 
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2. Simulation of the viscosity by Particle-Strength Exchange (PSE) method
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Realisation of the no-slip boundary condition

( ) ( )

Wall

du u t t u t p

dt t x y

ων+ ∆ − ∂ ∂≈ = − −
∆ ∂ ∂

su

y t

ω
ν

∂ = −
∂ ∆

No-slip condition is relized by generation of the proper amount of the 
vorticity on the wall. The distribution of the vorticity inside of  the flow 
domain generates non-zero tangent velocity at the wall us. 

This undesirable tangent velocity can be cancel by proper 
vorticity flux:
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Flow in channel with symmetric 
sudden expansion
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Flow in channel with symmetric
sudden expansion cont.

(Experiment by Durst,Melling, Whitelaw, JFM 1974)

H.Kudela, Task Quart,3 1999



Eruption of the Boundary Layer-
Motivation

Doligalski, Smith, Walker, 1994, Ann. Rev. Fluid Mech.

Panton, 2001, JPAS



Problem formulation

Re = 17670; νννν = 0.0002
The sequence of induced secondary vortex structures

Re=Γ/ νH.Kudela, Z. Malecha
Fluid Dyn. Res., 41,2009



Animation of passive markers
from the boundary region

Streamlines with the velocity directions
and vorticity in the fond.



Interaction of the Vortex with the Wall

Z. Malecha, PhD. Thesis, 2009



Flying insects

2D approximation

Center of the wing movement

Re=75 vorticity field

T. Kozlowski, PhD. Thesis, 2011



Conformal Mapping
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Kudela, Kozłowski, J. Theor. Appl. Mech.,47, 2009



The change of topolgy of vortex street

AIAA-paper, 2009



Flapping scheme in living nature 

Insects

Fishes

Birds

Simplification

Foil oscillation

Flapping system can be analysed in terms of 
three main non-dimensional parameters 



Transitions of the vortex street 
of a flapping foil, Re = 100

Kudela, Kozlowski, Chem. And Process Eng. ,31,2010



Phase transition diagram

Deflected vortex wake,
thrust and lift force

Chaotic vortex wake



Departament of Aerospace Engineering
prof. K. Sibilski group



Flapping mechanism

Re=3000

P. Czkałowki, Department of Aerospace Engineering



Flow Visualizations

Department of Aerospace Enginnering, prof. K. Sibilski, dr Gronczewski

F-16 UAV project



3D VORTEX IN-CELL

The velocity of the particles are caclulated by solving Poisson equations
by finite diffrence method for vector potential:
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Velocity on the grid nodes is 
calcualated by finite differences

Velocity of the particles is obtained
by the interpolation:
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ϕj – 3D B-spline 
of 3th order
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VORTEX  RING  MOTION (Regucki, Ph.D 2003)

Geometrical parameters of the ring:
- inner radius    r0 = 0.3
- outer radius    R0 =1.5
- circulation     Γ = 1.0

-number of the grid nodes: i = j = k = 101
- ∆x = ∆y = ∆z = h =0.1 
- time step: ∆t = 0.02
- number of vorticity-particles: N = 12100



VORTEX GAME (Leap-frogging)

Parameters:
- r1 = 0.15, r2 = 0.15
- R1 = 1.5, R2 = 1.5
- Γ1 = 1.0, Γ2 = 1.0

-kinetic energy: T0 = 5.25-variation~ -3%,
- helicity           H0 = 10-5,
- divergence of A, u, ω ; ~ 10-5,

Kudela, Regucki, ICCS, 2004



Reconnection of vortex 
rings

Regucki, PhD thesis,2003



Parallel Computations – vortex ring

Analytical and numerical velocities of 
the vortex ring

Evolution of the vortex ring

t=6

Andrzej Kosior,PhD. student



CUDA Hardware

CUDA hardware structure:
• multiprocessors,
• streaming processors,
• one instruction unit per 
multiprocessor,

In CUDA architecture we can 
distinguish following memory types:
• device memory,
• texture memory,
• shared memory.



Multigrid method
For Poisson equation

Two-grid method

Multigridgrid method

Full Mulitgrid Method



Test of Multigrid Method

The test problem was a three-dimensional Poisson equation which solution 
was following function:

( ) ( ) ( ) ( ) [ ]ψ x, y,z = sin 2πx sin 2πy sin 2πz ; x, y,z 0,1⋅ ⋅ ∈

There were two different boundary conditions tested.

Speed-up for Dirichlet boundary condition Speed-up for periodical boundary condition

Computations were performed on:
CPU (Intel i7 960),
GPU (NVIDIA GeForce GTX 480).



Summary

• Vortex Methods provide natural, 
useful tools for analyzing the flow in 
terms of vorticity dynamics

• VM are rubust and give reasonable 
results at a wide range of Reynolds 
number

• 3D VM are very promising for 
parallel  computations


